Functional Size Metrics

"Measuring the size of the software product from the perspective of what gets delivered to the user"

Presented by: Pam Morris
Managing Director
Total Metrics (Australia)
Pam.Morris@Totalmetrics.com
WWW.Totalmetrics.com
Pam Morris Profile

- CEO - Total Metrics Australia
- Member of the IFPUG Counting Practices Committee
- International Workgroup convenor and project editor ISO/IEC 14143 Functional Size Measurement Standards
- Executive Member of the Australian Software Metrics Association (ASMA)
- Core project member COSMIC Measurement Group
Summary of Topics

- **Overview** of Functional Size Measurement
- **Business Decisions** - contribution of Functional Size Metrics
- **ISO Standardisation** - functional size measures
Types of software measures

Resource → Project attributes

Process → Effort, Duration, Defects, Activities

Product → Software Size, Quality, Technical characteristics
Metrics using Product Size

- Productivity Rates

 Units of Software Product Delivered
 Person Hours of Effort

- Cost Effectiveness

 Units of Software Product Delivered
 Project Dollar Cost

- Product Quality

 Defects Delivered
 Units of Software Product Delivered
Software Product Size

- **Code Size**
 - Measure of **Source Lines of Code** (SLOCs, LOC, KLOCs)

- **Functional Size**
 - Measured in **Function Points** using technique called **Functional Size Measurement**
WHAT is Functional Size Measurement

- ISO/IEC/JTC1/SC7 Standard #14143 definition:
 “Functional Size: A size of software derived by quantifying the functional user requirements”
Example

Functional User Requirements

◆ Processes

 eg. Modify Job Details
 Enquire Job Details
 Report Job Allocations

◆ Data

 eg. Job Details
 Employees
Functional Size Measurement Methods

- **IFPUG** - Function Point Analysis (most common)
- **COSMIC-FFP** - FSM Method (emerging leader)
- **MarkII** - FSM Method (mostly in UK)
Origins of Functional Size Measurement

- Developed late 1970’s by Alan Albrecht at IBM
- Needed a measure of size which was independent of language, tools, techniques and technology
- Size = functions delivered to the user
- Allowed comparative measures of productivity
Characteristics of Functional Size Measurement

- Measures **Functional User Requirements**
- external ‘User’ view
- applied **any time** in SDLC
- derived in terms **understood by users**
- derived without reference to:
 - effort
 - methods used
 - physical or technical components
IFPUG Method - Measured components

- **PAYROLL APPLICATION**
- **PERSONNEL APPLICATION**
 - **INTERNAL** Stored Data
 - **EXTERNAL** Referenced Data

Data INPUT to Store

Information Extracted as OUTPUT

ENQUIRY on stored Data

IFPUG Method - allocates points to each Transaction and Data File based on the type and complexity of the function.
COSMIC - Measured components

COSMIC - allocates points to each PROCESS based on the number of entries, exits, reads and writes performed.
Functional Size

- For example: Functional Size
 \[= 675 \text{ IFPUG 4.1 Function Points} \]
- Measures the size of the software ‘**problem**’ not the ‘**solution**’
- Is the ‘**generic**’ size of the software
- Measures the ‘**what**’ NOT the ‘**how**’
Using Functional Size Measurement for Decision Making

Australian Industry Case Studies
Size Contributions to Decisions

- Tactical Decisions - project based
- Strategic decisions - portfolio based

“Measurement supports objective decisions”
Project Based - Evaluate Estimates

- **Situation**: Urgent management requirement for software to support the Registration of Stock - needs to be implemented as soon as possible.

- **Issue**: Favoured supplier price is 3 times that expected. Is the price inflated or did the business get it wrong?

- **Solution 1**: Put development out to Tender, use industry supplier’s quotations to check initial proposal. (Turnaround time 1-2 months)

- **Solution 2**: Have external company measure the size in function points, use industry based productivity and cost figures to estimate likely cost and compare with initial proposal. (Turnaround time 3 days)
Registration Development Project

- Functional Size Measurement based on Functional Specification
- Calculated Functional Size Development Project = 899 IFPUG function points (medium size application)
- Developed independent estimate of Post-design phase based on industry productivity data
Industry Figures for for C++

- **Productivity Data**
 - predicts **14 hours per function point** to build

- **Cost Data**
 - predicts **$1,234 per function point**

- **Contractor Median Rates** = **$90** per hour

* International Software Benchmarking Standards Group Release 6 - April 2000
Industry Figures for Projections

Project Lifecycle Profile (non-USA companies)
- effort breakdown

Post- Design = 65% of Total Effort

![Breakdown of Work Effort Across a Project](chart)

Post Design = 65% of project effort

IT Performance Trends 2000 - Meta Group - Howard Rubens
Approximate Cost Projections

◆ **Industry ISBSG Cost Data**
 * Median $1,234 per function point (899 fps)
 – **$1,109,366** for total project life cycle
 – **$721,087 post-design**
 * Median $119 per hour spent (at 14 hours/fp)
 – **$1,497,734** for total project life cycle
 – **$973,527 post-design**

◆ **Contracting Rates**
 * Median $90 per hour spent (at 14 hours/fp)
 – **$1,132,740** for total project life cycle
 – **$736,281 post-design**
Approximate Cost Projections

Summary

- Project size = 899 adjusted function points
- Industry figures *rough* prediction is that the cost for the:
 - Total project = $1.1 to $1.5 million
 - Remaining Post-Design = $700k - $1000K
- Project then used functional size for:
 - Fixed price tendering (dollar cost per FP)
 - Negotiating scope / price alterations
 - Monitoring project performance
 - Estimating defects
 - Estimating support ratios

Later TM informed that the supplier bid was $780K. Project was immediately approved!
Situation: Just implemented new application to track agents, and new release is planned.

Issue: Management believe that the original development cost too much and are hesitant to continue. Developers claim the system is very large and high costs were to be expected. Management is not convinced and do not want to throw good money after bad!

Solution 1 - Accept developers appraisal as correct as they must know and approve new release, (high risk of overspending again).

Solution 2 - Roughly estimate the size in function points, use industry based productivity figures to predict what should have been the cost. (Effort = 1 day)
Industry figures for Cost Projections

- Size estimated to be between 900 and 1200 function points best guess=1100 function points
- Industry ISBSG Cost Data
 - Median $1,234 per function point (1100 fps)
 - $1,357,400
 - Median $90 - $119 per hour spent (at 14 hours/fp)
 - $1,386,000 - $1,832,600

Actual cost was almost 20 times this figure!
Industry figures Effort Predictions

- Industry ISBSG Cost Data indicates a project Productivity rate of around **14 hours per function point**.
- Effort figures collected from the project indicated a project Productivity rate of around **65 hours per function point**.

Even allowing for technical complexity, large project team size (35) this is still low productivity!

Management decided not to proceed with second release before finding a way to improve productivity and reduce costs!
Project Based - Manage Outsourced Development

- **Situation**: New Software Application - development to be outsourced
- **Issue**: Very restricted budget, potential for changes to requirements - time and materials billing is not an option
- **Solution 1**: Accept fixed price quotations and expect very high penalties for changes. (Potential for high quotes and budget blowout)
- **Solution 2**: Use *SouthernScope* methodology ie. Fixed priced quotations based on dollars per function point delivered. Pay an agreed penalty rate of dollars per function point changed. (Budget can be agreed, monitored and controlled. Price for changes agreed up front)
SouthernScope Methodology

- Developed and used by Victorian Government
- Initially Size Projects using Function Points
- Suppliers quote fixed price $Dollars per function point$
- Penalties ie. +% $Dollars per function point$ negotiated based on the phase of lifecycle the change is introduced
- Use independent scope manager to arbitrate

For details see: www.mmv.vic.gov.au/southernscope
Portfolio Based - Controlling IT Contracts

- **Situation**: Organisational requirement to outsource IT
- **Issue**: How big is our IT portfolio? What should we expect to pay? How do we assess the benefits? How do we ensure we are getting value for money?
- **Solution 1**: Trust the outsourcing organisation to do the right thing and hope it is the best solution. *(Time to find out 3 - 5 years)*
- **Solution 2**: Measure the portfolio size to establish reasonable contract price, establish current baseline productivity rates, set improvement targets to be achieved on an annual basis that incur penalties and bonuses. Regularly audit suppliers figures *(Objective measure of suppliers performance and early warning of non-performance)*
Contract - Service Level Agreements

- **Productivity Measures:**
 - **Portfolio Assessment - Contract Negotiations**
 - overall size in function points eg. Large contracts approx 700K fps
 - **Performance Improvements**
 - development $/function point, delivery rates/ function point
 - CMM capability rating eg. Level 3 within 3 years
 - **Maintenance Productivity rates**
 - Turnaround time
 - $ / function points supported
 - **Estimating Enhancements**
 - establish enhancement productivity rate $/function points in different environment, client and supplier agree.
Estimated Portfolio Size Versus Detailed Measured Size

Comparisons of Actual Portfolio Size Versus Estimated Size

Estimates of size can be done at 10% cost of detail Measured Approach

<table>
<thead>
<tr>
<th>Organisation Identifier</th>
<th>Number applications</th>
<th>Estimated Size</th>
<th>Actual Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>3,920</td>
<td>3,753</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>26,265</td>
<td>27,392</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>29,410</td>
<td>24,608</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>45,780</td>
<td>49,185</td>
</tr>
</tbody>
</table>
Portfolio Based - Asset Evaluation

Situation: Federal Government requirement to value IT Software as part of the Capital Assets for Accrual Accounting

Issue: IT software is one of many government departments major expenditures, needs to be depreciated as a capital asset. Government funding is tied to capital assets and their replacement value.

Solution 1: Value software for what it cost to build 10 to 15 years ago (does not take into account changing technology to replace it)

Solution 2: Measure size of software portfolio determine ‘replacement value’ based on today's technology and $cost per function point (Realistic value - accepted by Auditor General's Office)
WHO is using Functional Size Measurement?

- Functional Size Measurement is the method of choice for measuring software world wide
- International User Function Point User Group (IFPUG) has over 1200 member organisations in 30 countries
- ASMA (Australian Software Metrics Association) established since 1990 members (VIC, NSW, QLD, ACT)
WHICH Organisations?

- **Software Houses**
 - developing fixed price quotes
 - managing project scope creep

- **Outsourcing Arrangements**
 - suppliers to constrain client changes and estimate costs
 - clients to verify suppliers claims, compare suppliers
WHICH Organisations?

◆ IT departments
 ➢ estimate costs, schedules and resources
 ➢ planning replacement software
 ➢ developing budgets
 ➢ evaluating packages
 ➢ comparing tools, techniques, technologies

◆ Organisations benchmarking IT
 ➢ performance
 ➢ productivity
 ➢ quality
WHAT are the Advantages of Using Functional Size Measurement

- Able to be used *early* in the life cycle
- *Independent* of technology, design and methods
- Easily *understood* by User
- Gives *consistent* results (+10%)
- *Standardised* and established method
- *Fast* - the time to count is minimal compared to time to develop (<1%)
Thank You and Good Luck with your Functional Size Measurement!

More details from Total Metrics WWW Site - WWW.Totalmetrics.com