Role of Measurement in Mature Project Management

Presented by: Pam Morris
TOTAL METRICS

Project Management Institute
January 29th 2002

“Measure what you want to improve. The very act of measuring a business process can result in improvement”
Agenda

- Measurement and its role in Project Delivery Processes
- Process Maturity and the capability to implement measurement
- Base Project measures - Product Size
- Using measurement for informed decision making - case studies
- Where to get assistance - ASMA, ISBSG
Three Main Reasons for Implementing Software Measurement

- **UNDERSTANDING**
 - Better understand and model the software process and its products

- **MANAGEMENT AND DECISION MAKING**
 - Facilitate better management of software process and its products

- **IMPROVING**
 - Provide guidance on improving software process and its products
Key Process Areas for IT Projects

- Requirements Management
- Project Planning
- Project Monitoring and Control
- Supplier Agreement Management
- Measurement and Analysis
- Process and Product Quality Assurance
- Configuration Management
Each Process within the Project Cycle needs Management

1. Define the process
2. Measure the process
3. Control the process
4. Improve the process

Execute the Process
Improve the Process

“Ideally processes should be technologically and cost competitive, adaptable and timely and must produce products that consistently meet customer and business needs”

◆ Did the process work as expected? What changes are needed?

★ Understand the process through measurement
★ Analyse and compare performance against our objectives
★ Plan, justify and implement actions, redefine process
★ Assess impacts and benefits gained against cost of implementation
Software Process Maturity

➢ The extent to which a specific process is explicitly defined, managed, measured, controlled, and effective.

➢ Maturity implies a potential for growth in capability and indicates both the richness of an organization's software process and the consistency with which it is applied in projects throughout the organization.

(Reference: SEI:SW-CMM)
SEI - CMM Maturity Level

- **SEI Capability Maturity Model**

 - **Initial (Level 1)**
 - Adhoc
 - **Repeatable (Level 2)**
 - Disciplined
 - **Defined (Level 3)**
 - Standard Consistent
 - **Managed (Level 4)**
 - Predictable
 - **Optimised (Level 5)**
 - Continuously improving

Maturity Levels
Focus for Improvement

- **5 Optimised**: Process improvement is institutionalised. Includes Change management and defect prevention.
- **4 Managed**: Product and processes are quantitatively controlled with detailed measurement.
- **3 Defined**: Software engineering and management practices defined and integrated, plus training.
- **2 Repeatable**: Project management system in place; performance is repeatable.
- **1 Initial**: Process is informal and adhoc; performance is unpredictable.
Measurement Focus at Each Maturity Level

- **Level 2 - project management**
 - plan versus actuals, major milestones
- **Level 3 - product quality**
 - defect data for product and work products
- **Level 4 - process capability and control**
 - process performance distributions
- **Level 5 - change management**
 - field experiments
 - parameterised process models
 - system dynamics models

Project focus

Product and technical focus

Process focus
Level 2 - Key Process Areas
Project Focus

- Requirements Management
- Project Planning
- Project Monitoring and Control
- Supplier Agreement Management
- Measurement and Analysis
- Process and Product Quality Assurance
- Configuration Management
CMM vs CMMI and ISO 15504

- **CMM** - Organisational Maturity - 5 point scale

- **CMMI** - Process Maturity - Staged and Continuous representation
 - provides choice of processes to focus to improve and flexibility to improve to a certain level

- **ISO 15504** - Process Maturity - (SPICE) Continuous representation
ISO 9000 and Measurement

- ISO 9001:1994 clause was
 “The supplier shall identify the need for statistical techniques required for establishing, controlling, and verifying process capability and product characteristics”

- ISO 9001:2000 now has a requirement for:
 - Measurement and monitoring of processes.
 - Measurement and monitoring of product

- Includes a concept that you can start anywhere - and get better.

- An obligation to implement objective measurement as a basis for improvement.
Process Improvement without Measurement
Using Project Process and Product Measurement to Improve IT Management Decision Making

Australian Industry Case Studies
Types of software measures

Resource → Process → Product

- Project attributes
- Effort
- Duration
- Defects
- Activities

Software Size
- Quality
- Technical characteristics
Product Measurement as an Indicator of Process Effectiveness

Productivity Rates

Units of Software Product Delivered
Person Hours of Effort

Cost Effectiveness

Cost of Software Product Delivered
Project Dollar Cost

Product Quality

Defects Delivered
Units of Software Product Delivered
Software Product Size

◆ Code Size
 ➢ Measure of Source Lines of Code (SLOCs, LOC, KLOCs)

◆ Functional Size
 ➢ Measured in Function Points using technique called Functional Size Measurement
WHAT is Functional Size Measurement

- ISO/IEC/JTC1/SC7 Standard #14143 definition:
 “Functional Size: A size of software derived by quantifying the functional user requirements”
Example

Functional User Requirements

◆ Processes

 eg. Modify Job Details
 Enquire Job Details
 Report Job Allocations

◆ Data

 eg. Job Details
 Employees
Origins of Functional Size Measurement

- Developed late 1970’s by Alan Albrecht at IBM
- Needed a measure of size which was independent of language, tools, techniques and technology
- Size = functions delivered to the user
- Allowed comparative measures of productivity
Characteristics of Functional Size Measurement

- Measures **Functional User Requirements**
- external ‘**User**’ view
- applied **any time** in SDLC
- derived in terms **understood by users**
- derived without reference to:
 - effort
 - **methods used**
 - physical or technical **components**
Points are allocated to each **Transaction** and **Data File** based on the type and complexity of the function.
For example: Functional Size

\[= 675 \text{ (IFPUG 4.1 Function Points)} \]

- Measures the size of the software ‘\textit{problem}’ not the ‘\textit{solution}’
- Is the ‘\textit{generic}’ size of the software
- Measures the ‘\textit{what}’ NOT the ‘\textit{how}’
Size Contributions to Decisions

- Tactical Decisions - project based
- Strategic decisions - portfolio based

“Measurement supports objective decisions”
Project Based - Evaluate Estimates

- **Situation**: Urgent management requirement for software to support the Registration of Stock - needs to be implemented as soon as possible.

- **Issue**: Favoured supplier price is 3 times that expected. Is the price inflated or did the business get it wrong?

- **Solution 1**: Put development out to Tender, use industry supplier’s quotations to check initial proposal. (Turnaround time 1 -2 months)

- **Solution 2**: Measure the size in function points, use industry based productivity and cost figures to estimate likely cost and compare with initial proposal. (Turnaround time 3 days)
Registration Development Project

- Functional Size Measurement based on Functional Specification

- Calculated Functional Size Development Project = 899 IFPUG function points (medium size application)

- Developed independent estimate of Post-design phase based on industry productivity data
Industry Figures for for C++

- **Productivity Data**
 - predicts **14 hours per function point** to build

- **Cost Data**
 - predicts **$1,234 per function point**

- **Contractor Median Rates C++ = $90 per hour**

International Software Benchmarking Standards Group Release 6 - April 2000
Industry Figures for Projections

*Project Lifecycle Profile (non-USA companies)
- effort breakdown
• Post- Design = 65% of Total Effort

Breakdown of Work Effort Across a Project

- Coding 31%
- Implementation 11%
- Analysis 18%
- Design 17%
- Testing 16%
- Documentation 7%

Post Design = 65% of project effort

*IT Performance Trends 2000 - Meta Group - Howard Rubens
Approximate Cost Projections

◆ Industry *ISBSG Cost Data
 ♦ Median $1,234 per function point (899 fps)
 – $1,109,366 for total project life cycle
 – $721,087 post-design
 ♦ Median $119 per hour spent (at 14 hours/fp)
 – $1,497,734 for total project life cycle
 – $973,527 post-design

◆ Contracting Rates
 ♦ Median $90 per hour spent (at 14 hours/fp)
 – $1,132,740 for total project life cycle
 – $736,281 post-design

*International Software Benchmarking Standards Group
Approximate Cost Projections

- **Summary**
 - project size = 899 adjusted function points
 - Industry figures *rough* prediction is that the cost for the:
 - Total project = $1.1 to $1.5 million
 - Remaining Post-Design = $700K - $1000K
 - project then used functional size for:
 - fixed price tendering (dollar cost per FP)
 - negotiating scope / price alterations
 - monitoring project performance
 - estimating defects
 - estimating support ratios

Later TM informed that the supplier bid was $780K. Project was immediately approved!
Project Based - Planning

Future Direction

- **Situation**: Just implemented new application to track agents, and new release is planned.

- **Issue**: Management believe that the original development cost too much and are hesitant to continue. Developers claim the system is very large and high costs were to be expected. Management is not convinced and do not want to throw good money after bad!

- **Solution 1**: Accept developers appraisal as correct as they must know and approve new release, *(high risk of overspending again)*.

- **Solution 2**: Roughly estimate the size in function points, use industry based productivity figures to predict what should have been the cost. *(Effort = 1 day)*
Industry figures for Cost Projections

- Size estimated to be between 900 and 1200 function points best guess=1100 function points
- Industry ISBSG Cost Data
 - Median $1,234 per function point (1100 fps)
 - $1,357,400
 - Median $90 - $119 per hour spent (at 14 hours/fp)
 - $1,386,000 - $1,832,600

Actual cost was almost 20 times this figure!
Industry figures Effort Predictions

Industry ISBSG Cost Data indicates a project Productivity rate of around **14 hours per function point**.

Effort figures collected from the project indicated a project Productivity rate of around **65 hours per function point**.

Even allowing for technical complexity, large project team size (35) this is still low productivity!

Management decided not to proceed with second release before finding a way to improve productivity and reduce costs!
Situation: New Software Application - development to be outsourced

Issue: Very restricted budget, potential for changes to requirements - time and materials billing is not an option

Solution 1 - Accept fixed price quotations and expect very high penalties for changes. (Potential for high quotes and budget blowout)

Solution 2 - Use SouthernScope methodology ie. Fixed priced quotations based on dollars per function point delivered. Pay an agreed penalty rate of dollars per function point changed. (Budget can be agreed, monitored and controlled. Price for changes agreed up front)
SouthernScope Methodology

- Developed and used by Victorian Government
- Initially Size Projects using Function Points
- Suppliers quote fixed price Dollars per function point
- Penalties ie. +% Dollars per function point negotiated based on the phase of lifecycle the change is introduced
- Use independent scope manager to arbitrate

For details see: www.mmv.vic.gov.au/southernscope
Portfolio Based - Controlling IT Contracts

- **Situation**: Organisational requirement to outsource IT

- **Issue**: How big is our IT portfolio? What should we expect to pay? How do we assess the benefits? How do we ensure we are getting value for money?

- **Solution 1**: Trust the outsourcing organisation to do the right thing and hope it is the best solution. *(Time to find out 3 - 5 years)*

- **Solution 2**: Measure the portfolio size to establish reasonable contract price, establish current baseline productivity rates, set improvement targets to be achieved on an annual basis that incur penalties and bonuses. Regularly audit suppliers figures *(Objective measure of suppliers performance and early warning of non-performance)*
Contract - Service Level Agreements

- **Productivity Measures:**
 - **Portfolio Assessment - Contract Negotiations**
 - overall size in function points eg. Large contracts approx 700K fps
 - **Performance Improvements**
 - development $/function point, delivery rates/ function point
 - CMM capability rating eg. Level 3 within 3 years
 - **Maintenance Productivity rates**
 - Turnaround time
 - $ / function points supported
- **Estimating Enhancements**
 - establish enhancement productivity rate $/function points in different environment, client and supplier agree.
Measurement is used by:

- **Software Houses**
 - developing fixed price quotes
 - managing project scope creep

- **Outsourcing Arrangements**
 - suppliers to constrain client changes and estimate costs
 - clients to verify suppliers claims, compare suppliers
Measurement is used by:

- IT departments
 - estimate costs, schedules and resources
 - planning replacement software
 - developing budgets
 - evaluating packages
 - comparing tools, techniques, technologies

- Organisations benchmarking IT
 - performance
 - productivity
 - quality
More Information and Resources

◆ **Australian Software Metrics Association (ASMA)**
 - contact: Robyn Smith 03 844 0560
 - www.asma.org.au
 - asmavic@ozonline.com.au

◆ **International Software Benchmarking Standards Group (ISBSG)**
 - contact: Peter Hill 0411 111 439
 - www.isbsg.org.au
 - peter.r.hill@bigpond.com.au

◆ **Total Metrics**
 - contact: Pam Morris 03 9882 7611
 - www.totalmetrics.com
 - Pam.Morris@Totalmetrics.com
Membership includes:
- Evening Industry seminars
- Annual Conference and Workshops
- Metrics Resource Materials
- Discount on ISBGS products
The International Software Benchmarking Standards Group

- maintains and exploits a repository of international software project metrics
- to help improve the management of I.T. resources, by both business and government,
- through improved project estimation and productivity, risk analysis and benchmarking.
ISBGS

- 9 countries actively participate (plus 7 others contribute project data)
 - Australia (ASMA)
 - Germany (DASMA)
 - India (NASSCOM)
 - Italy (GUFPI)
 - Japan (JFPUG)
 - Netherlands (NESMA)
 - Spain (AEMES)
 - United Kingdom (UKSMA)
 - United States of America (IFPUG)
ISBGS - Products and Services

- Venturi (free software) for the collection and submission of project data.

- Practical Project Estimation Toolkit (book and CD) - an invaluable resource for estimating software development effort and duration.

- The Benchmark Series - analyses Repository data.

- ISBSG Estimating Benchmarking & Research Suite (incorporating Data Disk Rel 7) A CD with data on 1238 projects

- ISBSG Reality Checker

- Project Benchmarking Service
Total Metrics

- Measurement and Process Improvement Consulting and Training Services

- WWW site
 - metrics News
 - metrics research papers and free downloads
 - links to Metrics sites
 - metrics events internationally

- Quarterly Newsletter - Metrics related news (free)

This presentation is available from DOWNLOADS Total Metrics
WWW Site - WWW.Totalmetrics.com
Role of Measurement in Mature Project Management

“The End

“To measure is to know!”

“Without objective data you are just another person with an opinion”
Thank You and Good Luck with your Project Measurement!